

CS 193A

Fragments

This document is copyright (C) Marty Stepp and Stanford Computer Science.
Licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Barbara Hecker

Situational layouts

● Your app can use different layout in different situations:
– different device type (tablet vs phone vs watch)

– different screen size

– different orientation (portrait vs. landscape)

– different country or locale (language, etc.)

Situation-specific folders

● Your app will look for resource folder names with suffixes:
– screen density (e.g. drawable-hdpi) (link)

● xhdpi: 2.0 (twice as many pixels/dots per inch)
● hdpi: 1.5
● mdpi: 1.0 (baseline)
● ldpi: 0.75

– screen size (e.g. layout-large) (link)
● small, normal, large, xlarge

– orientation (e.g. layout-land)
● portrait (), land (landscape)

http://developer.android.com/training/basics/supporting-devices/screens.html
http://developer.android.com/training/multiscreen/screensizes.html

Portrait vs landscape layout

● To create a different layout in landscape mode:
– create a folder in your project called res/layout-land

– place another copy of your activity's layout XML file there

– modify it as needed to represent the differences

Problem: redundant layouts

● With situational layout you begin to encounter redundancy.
– The layout in one case (e.g. portrait or medium) is very similar to the

layout in another case (e.g. landscape or large).

– You don't want to represent the same XML or Java code multiple times
in multiple places.

● You sometimes want your code to behave situationally.
– In portrait mode, clicking a button should launch a new activity.

– In landscape mode, clicking a button should launch a new view.

Fragments (link)

● fragment: A reusable segment of Android UI
that can appear in an activity.
– can help handle different devices and screen sizes

– can reuse a common fragment across multiple activities

– first added in Android 3.0 (usable in older versions if necessary)

http://developer.android.com/guide/components/fragments.html

Creating a fragment

● In Android Studio, right-click app, click:
New → Fragment → Fragment (blank)
– un-check boxes about "Include __ methods"

– now create layout XML and Java event code as in an Activity

Using fragments in activity XML

● Activity layout XML can include fragments.

<!-- activity_name.xml -->
<LinearLayout ...>
 <fragment ...
 android:id="@+id/id1"
 android:name="ClassName1"
 tools:layout="@layout/name1" />
 <fragment ...
 android:id="@+id/id2"
 android:name="ClassName2"
 tools:layout="@layout/name2" />
</LinearLayout>

Fragment life cycle

● Fragments have a similar life cycle
and events as activities.

● Important methods:
– onAttach to glue fragment to its

surrounding activity

– onCreate when fragment is loading

– onCreateView method that must
return fragment's root UI view

– onActivityCreated method that
indicates the enclosing activity is ready

– onPause when fragment
is being left/exited

– onDetach just as fragment
is being deleted

Another fragment lifecycle view

Fragment template

public class Name extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup vg, Bundle bundle) {
 // load the GUI layout from the XML
 return inflater.inflate(R.layout.id, vg, false);
 }

 public void onActivityCreated(Bundle savedState) {
 super.onActivityCreated(savedState);
 // ... any other GUI initialization needed
 }

 // any other code (e.g. event-handling)
}

Fragment vs. activity

● Fragment code is similar to activity code, with a few changes:
– Many activity methods aren't present in the fragment, but you can call
getActivity to access the activity the fragment is inside of.
 Button b = (Button) findViewById(R.id.but);
 Button b = (Button) getActivity().findViewById(R.id.but);

– Sometimes also use getView to refer to the activity's layout

– Event handlers cannot be attached in the XML any more. :-(
● Must be attached in Java code instead.

– Passing information to a fragment (via Intents/Bundles) is trickier.
● The fragment must ask its enclosing activity for the information.

– Fragment initialization code must be mindful of order of execution.
● Does it depend on the surrounding activity being loaded? Etc.
● Typically move onCreate code to onActivityCreated.

Fragment onClick listener

● Activity:
 <Button android:id="@+id/b1"
 android:onClick="onClickB1" ... />

● Fragment:
 <Button android:id="@+id/b1" ... />

 // in fragment's Java file
 Button b = (Button) getActivity().findViewById(r.id.b1);
 b.setOnClickListener(new View.OnClickListener() {
 @Override public void onClick(View view) {
 // whatever code would have been in onClickB1
 }
 });

Activity that accepts parameters

public class Name extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.name);

 // extract parameters passed to activity from intent
 Intent intent = getIntent();
 int name1 = intent.getIntExtra("id1", default);
 String name2 = intent.getStringExtra("id2", "default");

 // use parameters to set up the initial state
 ...
 }
 ...
}

Fragment that accepts parameters

public class Name extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(R.layout.name, container, false);
 }

 @Override
 public void onActivityCreated(Bundle savedState) {
 super.onActivityCreated(savedState);

 // extract parameters passed to activity from intent
 Intent intent = getActivity().getIntent();
 int name1 = intent.getIntExtra("id1", default);
 String name2 = intent.getStringExtra("id2", "default");

 // use parameters to set up the initial state
 ...
 }

Communication between fragments

● One activity might contain multiple fragments.
● The fragments may want to talk to each other.

– Use activity's getFragmentManager method.

– its findFragmentById method can
access any fragment that has an id.

Activity act = getActivity();
if (act.getResources().getConfiguration().orientation ==
 Configuration.ORIENTATION_LANDSCAPE) {
 // update other fragment within this same activity
 FragmentClass fragment = (FragmentClass)
 act.getFragmentManager().findFragmentById(R.id.id);
 fragment.methodName(parameters);
}

Fragment subclasses

● DialogFragment - a fragment meant to
be shown as a dialog box that pops up
on top of the current activity.

● ListFragment - a fragment that shows
a list of items as its main content.

● PreferenceFragment - a fragment
whose main content is meant to allow
the user to change settings for the app.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

